Senin, 24 Maret 2008

resistor



1 .RINGKASAN TEORI

Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan seperti tembaga, perak, emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan-bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, yaitu bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron sehingga disebut sebagai isolator.
Resistor adalah komponen dasar elektronika yang selalu digunakan dalam setiap rangkaian elektronika karena bisa berfungsi sebagai pengatur atau untuk membatasi jumlah arus yang mengalir dalam suatu rangkaian. Dengan resistor, arus listrik dapat didistribusikan sesuai dengan kebutuhan. Sesuai dengan namanya resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Satuan resistansi dari suatu resistor disebut Ohm atau dilam
bangkan dengan simbol Ω (Omega).

Di dalam rangkaian elektronika, resistor dilambangkan dengan huruf "R". Dilihat dari bahannya, ada beberapa jenis resistor yang ada dipasaran antara lain : Resistor Carbon, Wirewound, dan Metalfilm. Ada juga Resistor yang dapat diubah-ubah nilai resistansinya antara lain : Potensiometer, Rheostat dan Trimmer (Trimpot). Selain itu ada juga Resistor yang nilai resistansinya berubah bila terkena cahaya namanya LDR (Light Dependent Resistor) dan resistor yang nilai resistansinya akan bertambah besar bila terkena suhu panas yang namanya PTC (Positive Thermal Coefficient) serta resistor yang nilai resistansinya akan bertambah kecil bila terkena suhu panas yang namanya NTC (Negative Thermal Coefficient).

Untuk resistor jenis carbon maupun metalfilm biasanya digunakan kode-kode warna sebagai petunjuk besarnya nilai resistansi (tahanan) dari resistor. Resistor ini mempunyai bentuk seperti tabung dengan dua kaki di kiri dan kanan. Pada badannya terdapat lingkaran membentuk cincin kode warna, kode ini untuk mengetahui besar resistansi tanpa harus mengukur besarnya dengan ohmmeter. Kode warna tersebut adalah standar manufaktur yang dikeluarkan oleh EIA.

(Electronic Industries Association) seperti yang ditunjukkan pada tabel 1.1.

nilai-nilai resistor

Besaran resistansi suatu resistor dibaca dari posisi cincin yang paling depan ke arah cincin toleransi. Biasanya posisi cincin toleransi ini berada pada badan resistor yang paling pojok atau juga dengan lebar yang lebih menonjol, sedangkan posisi cincin yang pertama agak sedikit ke dalam. Dengan demikian pemakai sudah langsung mengetahui berapa toleransi dari resistor tersebut. Kalau kita telah bisa menentukan mana cincin yang pertama selanjutnya adalah membaca nilai resistansinya.

Jumlah cincin yang melingkar pada resistor umumnya sesuai dengan besar toleransinya. Biasanya resistor dengan toleransi 5%, 10% atau 20% memiliki 3 cincin (tidak termasuk cincin toleransi). Tetapi resistor dengan toleransi 1% atau 2% (toleransi kecil) memiliki 4 cincin (tidak termasuk cincin toleransi). Cincin pertama dan seterusnya berturut-turut menunjukkan besar nilai satuan, dan cincin terakhir adalah faktor pengalinya. Misalnya resistor dengan cincin kuning, violet, merah dan emas. Cincin berwarna emas adalah cincin toleransi. Dengan demikian urutan warna cincin resistor ini adalah, cincin pertama berwarna kuning, cincin kedua berwarna violet dan cincin ke tiga berwarna merah. Cincin ke empat yang berwarna emas adalah cincin toleransi. Dari tabel 1.1 diketahui jika cincin toleransi berwarna emas, berarti resistor ini memiliki toleransi 5%. Nilai resistansinya dihitung sesuai dengan urutan warnanya. Pertama yang dilakukan adalah menentukan nilai satuan dari resistor ini. Karena resistor ini resistor 5% (yang biasanya memiliki tiga cincin selain cincin toleransi), maka nilai satuannya ditentukan oleh cincin pertama dan cincin kedua. Masih dari tabel 1.1, diketahui cincin kuning nilainya = 4 dan cincin violet nilainya = 7. Jadi cincin pertama dan ke dua atau kuning dan violet berurutan, nilai satuannya adalah 47. Cincin ketiga adalah faktor pengali, dan jika warna cincinnya merah berarti faktor pengalinya adalah 100. Sehingga dengan ini diketahui nilai resistansi resistor tersebut adalah nilai satuan x faktor pengali atau 47 x 100 = 4700 Ohm = 4,7K Ohm (pada rangkaian elektronika biasanya di tulis 4K7 Ohm) dan toleransinya adalah + 5%. Arti dari toleransi itu sendiri adalah batasan nilai resistansi minimum dan maksimum yang di miliki oleh resistor tersebut. Jadi nilai sebenarnya dari resistor 4,7k Ohm + 5% adalah :

4700 x 5% = 235

Jadi,

Rmaksimum = 4700 + 235 = 4935 Ohm

Rminimum = 4700 – 235 = 4465 Ohm

Apabila resistor di atas di ukur dengan menggunakan ohmmeter dan nilainya berada pada rentang nilai maksimum dan minimum (4465 s/d 4935) maka resistor tadi masih memenuhi standar. Nilai toleransi ini diberikan oleh pabrik pembuat resistor untuk mengantisipasi karakteristik bahan yang tidak sama antara satu resistor dengan resistor yang lainnya sehingga para desainer elektronika dapat memperkirakan faktor toleransi tersebut dalam rancangannya. Semakin kecil nilai toleransinya, semakin baik kualitas resistornya. Sehingga dipasaran resistor yang mempunyai nilai toleransi 1% (contohnya : resistor metalfilm) jauh lebih mahal dibandingkan resistor yang mempunyai toleransi 5% (resistor carbon)

Spesifikasi lain yang perlu diperhatikan dalam memilih resistor pada suatu rancangan selain besar resistansi adalah besar watt-nya atau daya maksimum yang mampu ditahan oleh resistor. Karena resistor bekerja dengan di aliri arus listrik, maka akan terjadi disipasi daya berupa panas sebesar :

W = I2R watt .......................................................................... (1.1)

Semakin besar ukuran fisik suatu resistor, bisa menunjukkan semakin besar kemampuan disipasi daya resistor tersebut. Umumnya di pasar tersedia ukuran 1/8, 1/4, 1/2, 1, 2, 5, 10 dan 20 watt. Resistor yang memiliki disipasi daya maksimum 5, 10 dan 20 watt umumnya berbentuk balok memanjang persegi empat berwarna putih, namun ada juga yang berbentuk silinder dan biasanya untuk resistor ukuran besar ini nilai resistansi di cetak langsung dibadannya tidak berbentuk cincin-cincin warna, misalnya 100Ω5W atau 1KΩ10W.

Dilihat dari fungsinya, resistor dapat dibagi menjadi :

1. Resistor Tetap (Fixed Resistor)

Yaitu resistor yang nilainya tidak dapat berubah, jadi selalu tetap (konstan). Resistor ini biasanya dibuat dari nikelin atau karbon. Berfungsi sebagai pembagi tegangan, mengatur atau membatasi arus pada suatu rangkaian serta memperbesar dan memperkecil tegangan.

2. Resistor Tidak Tetap (variable resistor)

Yaitu resistor yang nilainya dapat berubah-ubah dengan jalan menggeser atau memutar toggle pada alat tersebut, sehingga nilai resistor dapat kita tetapkan sesuai dengan kebutuhan. Berfungsi sebagai pengatur volume (mengatur besar kecilnya arus), tone control pada sound system, pengatur tinggi rendahnya nada (bass/treble) serta berfungsi sebagai pembagi tegangan arus dan tegangan.

3. Resistor NTC dan PTC.

NTC (Negative Temperature Coefficient), yaitu resistor yang nilainya akan bertambah kecil bila terkena suhu panas. Sedangkan PTC (Positive Temperature Coefficient), yaitu resistor yang nilainya akan bertambah besar bila temperaturnya menjadi dingin.

4. Resistor LDR

LDR (Light Dependent Resistor) yaitu jenis resistor yang berubah hambatannya karena pengaruh cahaya. Bila terkena cahaya gelap nilai tahanannya semakin besar, sedangkan bila terkena cahaya terang nilainya menjadi semakin kecil.

2. RANGKAIAN RESISTOR

Dalam praktek para desainer kadang-kadang membutuhkan resistor dengan nilai tertentu. Akan tetapi nilai resistor tersebut tidak ada di toko penjual, bahkan pabrik sendiri tidak memproduksinya. Solusi untuk mendapatkan suatu nilai resistor dengan resistansi yang unik tersebut dapat dilakukan dengan cara merangkaikan beberapa resistor sehingga didapatkan nilai resistansi yang dibutuhkan. Ada dua cara untuk merangkaikan resistor, yaitu :
1. Cara Serial

2. cara Paralel

Rangkaian resistor secara serial akan mengakibatkan nilai resistansi total semakin besar.

Di bawah ini contoh resistor yang dirangkai secara serial.

Pada rangkaian resistor serial berlaku rumus

RTOTAL = R1 + R2 + R3 ................................................................... (1.2)

Sedangkan rangkaian resistor secara paralel akan mengakibatkan nilai resistansi pengganti semakin kecil.

Di bawah ini contoh resistor yang dirangkai secara paralel

Pada rangkaian resistor paralel berlaku rumus :

Di bawah ini beberapa rumus (Hukum Ohm) yang sering dipakai dalam perhitungan elektronika


Di mana :

V = tegangan dengan satuan Volt

I = arus dengan satuan Ampere

R = resistansi dengan satuan Ohm

P = daya dengan satuan Watt

Konversi satuan :

1 Ohm = 1 Ω 1 M Ω = 1.000.000 Ω

1 K Ohm = 1 K Ω (M = Mega (106); K = Kilo (103))

1 M Ohm = 1 M Ω

1 K Ω = 1.000 Ω







Selasa, 04 Maret 2008

Semikonduktor

Prinsip Dasar

Semikonduktor merupakan elemen dasar dari komponen elektronika seperti dioda, transistor dan sebuah IC (integrated circuit).Disebut semi atau setengah konduktor, karena bahan ini memang bukan konduktor murni. Bahan- bahan logam seperti tembaga, besi, timah disebut sebagai konduktor yang baik sebab logam memiliki susunan atom yang sedemikian rupa, sehinggah elektronnya dapat bergerak bebas. Sebenarnya atom tembaga dengan lambang kimia Cu memiliki inti 29 ion (+) dikelilingi oleh 29 elektron (-). Sebanyak 28 elektron menempati orbit-orbit bagian dalam membentuk inti yang disebut nucleus. Dibutuhkan energi yang sangat besar untuk dapat melepaskan ikatan elektronelektron ini. Satu buah elektron lagi yaitu elektron yang ke-29, berada pada orbit paling luar.Orbit terluar ini disebut pita valensi dan elektron yang berada pada pita ini dinamakan elektron valensi. Karena hanya ada satu elektron dan jaraknya 'jauh' dari nucleus, ikatannya tidaklah terlalu kuat. Hanya dengan energi yang sedikit saja elektron terluar ini mudah terlepas dari

ikatannya.

Pada suhu kamar, elektron tersebut dapat bebas bergerak atau berpindahpindah dari satu nucleus ke nucleus lainnya. Jika diberi tegangan potensial listrik, elektron-elektron tersebut dengan mudah berpindah kearah potensial yang sama. Phenomena ini yang dinamakan sebagai arus listrik. Isolator adalah atom yang memiliki elektron valensi sebanyak 8 buah, dan dibutuhkan energi yang besar untuk dapat melepaskan elektron-elektron ini. Dapat ditebak, semikonduktor adalah unsur yang susunan atomnya memiliki elektron valensi lebih dari 1 dan kurang dari 8. Tentu saja yang paling "semikonduktor" adalah unsur yang atomnya memiliki 4 elektron valensi.

Susunan Atom Semikonduktor

Bahan semikonduktor yang banyak dikenal contohnya adalah Silicon (Si), Germanium (Ge) dan Galium Arsenida (GaAs) Germanium dahulu adalah bahan satu-satunya yang dikenal untuk membuat komponen semikonduktor. Namun belakangan, silikon menjadi popular setelah ditemukan cara mengekstrak bahan ini dari alam. Silikon merupakan bahan terbanyak ke dua yang ada dibumi setelah oksigen (O2). Pasir, kaca dan batu-batuan lain adalah bahan alam yang banyak mengandung unsur silikon.

Dapatkah anda menghitung jumlah pasir dipantai. Struktur atom kristal silikon, satu inti atom (nucleus) masing-masing memiliki 4 elektron valensi. Ikatan inti atom yang stabil adalah jika dikelilingi oleh 8 elektron, sehingga 4 buah elektron atom kristal tersebut membentuk ikatan kovalen dengan ion-ion atom tetangganya. Pada suhu yang sangat rendah (0oK), struktur atom silikon divisualisasikan seperti pada gambar berikut.

Ikatan kovalen menyebabkan elektron tidak dapat berpindah dari satu inti atom ke inti atom yang lain. Pada kondisi demikian, bahan semikonduktor bersifat isolator karena tidak ada elektron yang dapat berpindah untuk menghantarkan listrik.Pada suhu kamar, ada

beberapa ikatan kovalen yang lepas karena energi panas, sehingga memungkinkan elektron terlepas dari ikatannya. Namun hanya beberapa jumlah kecil yang dapat terlepas, sehingga tidak memungkinkan untuk menjadi konduktor yang baik. Ahli-ahli fisika terutama yang menguasai fisika quantum pada masa itu mencoba memberikan doping pada bahan semikonduktor ini. Pemberian doping

dimaksudkan untuk mendapatkan elektron valensi bebas dalam jumlah

lebih banyak dan permanen, yang diharapkan akan dapat mengahantarkan listrik. Kenyataanya demikian, mereka memang iseng sekali dan jenius.

Tipe-N

Misalnya pada bahan silikon diberi doping phosphorus atau arsenic yang pentavalen yaitu bahan kristal dengan inti atom memiliki 5 elektron valensi. Dengan doping, Silikon yang tidak lagi murni ini (impurity semiconductor) akan memiliki kelebihan elektron. Kelebihan elektron membentuk semikonduktor tipe-n. Semikonduktor tipe-n disebut juga donor yang siap melepaskan elektron.


Tipe-P

Kalau silikon diberi doping Boron, Gallium atau Indium, maka akan didapat semikonduktor tipe-p. Untuk mendapatkan silikon tipe-p, bahan dopingnyaadalah bahan trivalen yaituunsur dengan ion yang

memiliki 3 elektron pada pita valensi. Karena ion silikon memiliki 4

elektron, dengan demikian ada ikatan kovalen yang bolong (hole). Hole ini digambarkan sebagai akseptor yang siap menerima elektron.

Dengan demikian, kekurangan elektron menyebabkan semikonduktor ini menjadi tipe-p.

Resistansi

Semikonduktor tipe-p atau tipe-n jika berdiri sendiri tidak lain adalah sebuah resistor. Sama seperti resistor karbon, semikonduktor memiliki

resistansi. Cara ini dipakai untuk membuat resistor di dalam

sebuah komponen semikonduktor. Namun besar resistansi yang bisa didapat kecil karena terbatas pada volume semikonduktor itu sendiri.

Dioda PN

Jika dua tipe bahan semikonduktor ini dilekatkan--pakai lem barangkali ya :), maka akan didapat sambungan P-N (p-n junction) yang dikenal sebagai dioda.

Pada pembuatannya memang material tipe P dan tipe N bukan disambung secara harpiah, melainkan dari satu bahan (monolitic) dengan memberi doping (impurity material) yang berbeda.
Jika diberi tegangan maju (forward bias), dimana tegangan sisi P lebih besar dari sisi N, elektron dengan mudah dapat mengalir dari sisi N mengisi kekosongan elektron (hole) di sisi P.

Sebaliknya jika diberi tegangan balik (reverse bias), dapat dipahami tidak ada elektron yang dapat mengalir dari sisi N mengisi hole di sisi P, karena tegangan potensial di sisi N lebih tinggi. Dioda akan hanya dapat mengalirkan arus satu arah saja, sehingga dipakai untuk aplikasi rangkaian penyearah (rectifier). Dioda, Zener, LED, Varactor dan Varistor adalah beberapa komponen semikonduktor sambungan PN yang dibahas pada kolom khusus.

Transistor Bipolar

Transistor merupakan dioda dengan dua sambungan (junction).Sambungan itu membentuktransistor PNP maupun NPN. Ujung-ujung terminalnya berturut-turut disebut emitor, base dan kolektor. Base selalu berada di tengah, di antara emitor dan kolektor. Transistor ini disebut transistor bipolar, karena struktur dan prinsip kerjanya tergantung dari perpindahan elektron di kutup negatif mengisi kekurangan elektron (hole) di kutup positif. bi = 2 dan polar = kutup. Adalah William Schockley pada tahun 1951 yang pertama kali menemukan transistor bipolar.

Akan dijelaskan kemudian, transistor adalah komponen yang bekerja sebagai sakelar (switch on/off) dan juga sebagai penguat (amplifier).

Transistor bipolar adalah inovasi yang mengantikan transistor tabung (vacum tube). Selain dimensi transistor bipolar yang relatif lebih kecil, disipasi dayanya juga lebih kecil sehingga dapat bekerja pada suhu yang lebih dingin. Dalam beberapa aplikasi, transistor tabung masih digunakan terutama pada aplikasi audio, untuk mendapatkan kualitas suara yang baik, namun konsumsi dayanya sangat besar.

Sebab untuk dapat melepaskan elektron, teknik yang digunakan adalah pemanasan filamen seperti pada lampu pijar.

Bias Dc

Transistor bipolar memiliki 2 junction yang dapat disamakan dengan

penggabungan 2 buah dioda. Emiter-Base adalah satu junction dan Base-Kolektor junction lainnya. Seperti pada dioda, arus hanya akan mengalir hanya jika diberi bias positif, yaitu hanya jika tegangan pada material P lebih positif daripada material N (forward bias). Pada gambar ilustrasi transistor NPN berikut ini, junction base-emiter diberibias positif sedangkan basecolector mendapat bias negatif (reverse bias).

Karena base-emiter mendapat bias positif maka seperti pada dioda, elektron mengalir dari emiter menuju base. Kolektor pada rangkaian ini lebih positif sebab mendapat tegangan positif. Karena kolektor ini lebih positif, aliran elektron bergerak menuju kutup ini.

Misalnya tidak ada kolektor, aliran elektron seluruhnya akan menuju base seperti pada dioda. Tetapi karena lebar base yang sangat tipis,

hanya sebagian elektron yang dapat bergabung dengan hole yang ada pada base.menembus lapisan base menuju kolektor. Inilah alasannya mengapa jika dua dioda digabungkan tidak dapat menjadi sebuah transistor, karena persyaratannya adalah lebar base harus sangat tipis

sehingga dapat diterjang oleh elektron. Jika misalnya tegangan

base-emitor dibalik (reverse bias), maka tidak akan terjadi aliran elektron dari emitor menuju kolektor. Jika pelan-pelan 'keran' base

diberi bias maju (forward bias), elektron mengalir menuju kolektor dan

besarnya sebanding dengan besar arus bias base yang diberikan. Dengan kata lain, arus base mengatur banyaknya elektron yang mengalir dari emiter menuju kolektor. Ini yang dinamakan efek penguatan transistor, karena arus base yang kecil menghasilkan arus emitercolector yang lebih besar. Istilah amplifier (penguatan) menjadi salah kaprah, karena dengan penjelasan di atas sebenarnya yang terjadi bukan penguatan, melainkan arus yang lebih kecil mengontrol aliran arus yanglebih besar. Juga dapat dijelaskan bahwa base mengatur membuka dan menutup aliran arus emiter-kolektor (switch on/off).

Pada transistor PNP, fenomena yang sama dapat dijelaskan dengan memberikan bias seperti pada gambar berikut. Dalam hal ini yang disebut perpindahan arus adalah arus hole.

Untuk memudahkan pembahasan prinsip bias transistor lebih lanjut,

berikut adalah terminologi parameter transistor. Dalam hal ini arah arus adalah dari potensial yanglebih besar ke potensial yang lebih kecil.

IC : arus kolektor

IB : arus base

IE : arus emitor

VC : tegangan kolektor

VB : tegangan base

VE : tegangan emitor

VCC : tegangan pada kolektor

VCE : tegangan jepit kolektor-emitor

VEE : tegangan pada emitor

VBE : tegangan jepit baseemitor

ICBO : arus base-kolektor

VCB : tegangan jepit kolektor-base

Perlu diingat, walaupun tidak perbedaan pada doping bahan pembuat emitor dan kolektor, namun pada prakteknya emitor dan kolektor tidak dapat dibalik.

Dari satu bahan silikon (monolitic), emitor dibuat terlebih dahulu, kemudian base dengan doping yang berbeda dan terakhir adalah kolektor. Terkadang dibuat juga efek dioda pada terminalterminalnya sehingga arus hanya akan terjadi pada arah yang dikehendaki.

2.1 DIODA

Kita dapat menyelidiki karakteristik statik dioda, dengan cara memasang dioda seri dengan sebuah catu daya dc dan sebuah resistor. Kurva karakteristik statik dioda merupakan fungsi dari arus ID, arus yang melalui dioda, terhadap tegangan VD, beda tegang antara titik a dan b (lihat gambar 1 dan gambar 2)

karakteristik statik dioda

Karakteristik statik dioda dapat diperoleh dengan mengukur tegangan dioda (Vab) dan arus yang melalui dioda, yaitu ID. Dapat diubah dengan dua cara, yaitu mengubah VDD. Bila arus dioda ID kita plotkan terhadap tegangan dioda Vab, kita peroleh karakteristik statik dioda Bila anoda berada pada tegangan lebih tinggi daripada katoda (VD positif) dioda dikatakan mendapat bias forward. Bila VD negatip disebut bias reserve atau bias mundur. Pada gambar 2 VC disebut cut-involtage, IS arus saturasi dan VPIV adalah peak-inverse voltage.
Bila harga VDD diubah, maka arus ID dan VD akan berubah pula. Bila kita mempunyai karakteristik statik dioda dan kita tahu harga VDD dan RL, maka harga arus ID dan VD dapat kita tentukan sebagai berikut.Dari gambar 1.
VDD = Vab + (I
· RL) atau I = -(Vab/RL) + (VDD / RL) Bila hubungan di atas kita lukiskan pada karakteristik statik dioda kita akan mendapatkan garis lurus dengan kemiringan (1/RL).

MODUL 3 FI – 2104 ELEKTRONIKA 20

Kita lihat bahwa garis beban memotong sumbu V dioda pada harga VDD yaitu bila arus I=0, dan memotong sumbu I pada harga (VDD/RL). Titik potong antara karakteristik statik dengan garis beban memberikan harga tegangan dioda VD(q) dan arus dioda ID(q).
Dengan mengubah harga VDD kita akan mendapatkan garis-garis beban sejajar seperti pada gambar 3.
Bila VDD<0>μA untuk dioda silikon.